Common Adversaries Form Alliances: Modelling Complex Networks via Anti-transitivity
نویسندگان
چکیده
Anti-transitivity captures the notion that enemies of enemies are friends, and arises naturally in the study of adversaries in social networks and in the study of conflicting nation states or organizations. We present a simplified, evolutionary model for anti-transitivity influencing link formation in complex networks, and analyze the model’s network dynamics. The Iterated Local Anti-Transitivity (or ILAT) model creates anti-clone nodes in each time-step, and joins anti-clones to the parent node’s non-neighbor set. The graphs generated by ILAT exhibit familiar properties of complex networks such as densification, short distances (bounded by absolute constants), and bad spectral expansion. We determine the cop and domination number for graphs generated by ILAT, and finish with an analysis of their clustering coefficients. We interpret these results within the context of real-world complex networks and present open problems.
منابع مشابه
Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملProtein residue networks from a local search perspective
We examined protein residue networks (PRNs) from a local search perspective to understand why PRNs are highly clustered when having short paths is important for protein functionality. We found that by adopting a local search perspective, this conflict between form and function is resolved as increased clustering actually helps to reduce path length in PRNs. Further, the paths found via our EDS ...
متن کاملModelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network
Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...
متن کاملIntroducing Albumin and Interleukin 6 As Common Critical Dysregulated Protein Between Migraine and Gliosarcoma
Introduction: It is reported that migraine may be risk factor of brain cancers. Since the one of the best ways to assess this possible relationship is molecular mechanism study, here the common central dysregulated proteins between these diseases are investigated via network analysis. Methods: The dysregulated proteins of migraine and gliosarcoma are extracted from STRING database and interact...
متن کاملModeling Transitivity in Complex Networks
An important source of high clustering coefficient in real-world networks is transitivity. However, existing approaches for modeling transitivity suffer from at least one of the following problems: i) they produce graphs from a specific class like bipartite graphs, ii) they do not give an analytical argument for the high clustering coefficient of the model, and iii) their clustering coefficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017